Uniform two-weight norm inequalities for Hankel transform Bochner-Riesz means of order one

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Inequalities for Bochner-riesz Means in the Plane

for some fixed large N0; we shall call such weights admissible. Rubio de Francia [11] showed that for every w ∈ L(R) there is a nonnegative W ∈ L(R) such that ‖W‖2 ≤ Cλ‖w‖2, Cλ < ∞ if λ > 0, and the analogous weighted norm inequality for S t holds uniformly in t. He used methods related to factorization theory of operators and the proof gave no information on how to construct w from W . In [3] ...

متن کامل

The Bochner-Riesz means for Fourier-Bessel expansions: Norm inequalities for the maximal operator and almost everywhere convergence

In this paper, we develop a thorough analysis of the boundedness properties of the maximal operator for the Bochner-Riesz means related to the Fourier-Bessel expansions. For this operator, we study weighted and unweighted inequalities in the spaces Lp((0, 1), x2ν+1 dx). Moreover, weak and restricted weak type inequalities are obtained for the critical values of p. As a consequence, we deduce th...

متن کامل

Spectra of Bochner-Riesz means on L

The Bochner-Riesz means are shown to have either the unit interval [0, 1] or the whole complex plane as their spectra on Lp, 1 ≤ p <∞

متن کامل

Improved Bounds for Bochner-riesz and Maximal Bochner-riesz Operators

In this note we improve the known L p-bounds for Bochner-Riesz operators and their maximal operators.

متن کامل

Endpoint Inequalities for Bochner-riesz Multipliers in the Plane

A weak-type inequality is proved for Bochner-Riesz means at the critical index, for functions in L(R), 1 ≤ p < 4/3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2004

ISSN: 0040-8735

DOI: 10.2748/tmj/1113246674